The following is modified from https://oliviergimenez.github.io/post/sim_with_jags/

The trick is to use a data block, have the simplest model block you could think of and pass the parameters as if they were data.

library(R2jags)
library(runjags)
library(mcmcplots)
library(tidyverse)
txtstring <- '
data {
  # Likelihood
  for (t in 1:T) {
    N_S_E[t] ~ dpois(beta_E * E[t] * S[t] / N)
    N_S_I[t] ~ dpois(beta_I * I[t] * S[t] / N)
    N_E_I[t] ~ dbinom(p_E_I, E[t])
    N_I_R[t] ~ dbinom(p_I_R, I[t])
  }

  # These are the known time evolution steps:
  for(t in 2:T) {
    S[t] <- S[t-1] - N_S_E[t-1] - N_S_I[t-1]
    E[t] <- E[t-1] + N_S_E[t-1] + N_S_I[t-1] - N_E_I[t-1]
    I[t] <- I[t-1] + N_E_I[t-1] - N_I_R[t-1]
    R[t] <- R[t-1] + N_I_R[t-1]
  }

  # Need a value for S[1], E[1], and I[1]
  I[1] <- I_start
  E[1] <- E_start
  R[1] <- R_start
  S[1] <- N - I[1] - R[1] # Left over

  # Probabilities and R_0  
  p_E_I <- 1 - exp( - gamma_E )
  p_I_R <- 1 - exp( - gamma_I )
  R_0 <- (beta_E/gamma_E) + (beta_I/gamma_I)
}
model{
  fake <- 0
}
'

# parameters for simulations 
N = 4.9*10^6 # Population size
T = 200 # Maximum time steps

# First the hyper-parameters
gamma_E_inv = 6.6; gamma_E = 1/gamma_E_inv # Days / Inverse days
gamma_I_inv = 7.4; gamma_I = 1/gamma_I_inv
beta_E_inv = 5; beta_E = 1/beta_E_inv
beta_I_inv = 5; beta_I = 1/beta_I_inv
R_0 = beta_E/gamma_E + beta_I/gamma_I

# parameters are treated as data for the simulation step
data<-list(N = N, T = T, gamma_E = gamma_E, gamma_I = gamma_I, 
           beta_E = beta_E, beta_I = beta_I,
           I_start = 10, E_start = 0, R_start = 0)

# run jags
out <- run.jags(txtstring, data = data,monitor=c("S", "E", "I", "R"),
                sample = 1, n.chains = 1, summarise=FALSE)
## Compiling rjags model...
## Calling the simulation using the rjags method...
## Note: the model did not require adaptation
## Burning in the model for 4000 iterations...
## Running the model for 1 iterations...
## Simulation complete
## Finished running the simulation
Simulated <- coda::as.mcmc(out)

# Create a plot
dat = tibble(simulation = as.vector(Simulated))
dat$comparment <- c(rep("S",T), rep("E",T), rep("I",T),rep("R",T))
dat$t <- rep(1:T, 4)

ggplot(dat, aes(x = t, y = simulation, colour = comparment)) +
  geom_line()